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SHOCK WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM
USING FINITE DIFFERENCES

Section 1

INTRODUCTION .

Finite-difference fluid equations have been imown® % to pro-
vide valid solutions to problems centaining shocks when the physically
correct conservation variables in conservation form are used. In this
study, we examine the problem of shock propagation in an inhomogeneous
medium with exponentially varying deasity. The one-dimensional self-
similar analytic solution to this problem will be compared to various
numerical solutions using different algorithms. This problem consti-
tutes a more severe numerical test for shock propagation than the shock
wave in an homogeneous medium and therefore serves as a better test of
numerical algorithms.

In particular we find that care must be taken in the use of forms

of the hydrodynamic equations which do not express physical conservation.

For non-conservation formulations of the energy equation an artifieial
viscosity must be introduced, not only to provide the necessary stability,
but also to provide shock heating. The magnitude of th's artificial vis-
cosity to obtain best shock results depends on the grid size and the
problem type. There is no simple way to obtain this optimal viscosity
for problems where the solution is not known in advance.

In addition, we find that Flux-Corrected Transport® (FCT) has
several properties which make it more flexible and effective for

%

shock calculations. While the comparison between different energy
iormulations has been made easier through the use of the FCT scheme,
the results hold for any finite difference algorithm and in particular
they will be shown to hold using the Lax-Wendroff scheme as well.

Note: Manuscript submitted August 22, 1975,
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T he problem and its analytical solution are well described
by Zeldovich and Raizer.® We cutline here their self-similar solution
as well as the conditions under which it holds. The solution is given
both for the increasing and decreasing density cases. The medium is
defined by its characteristic length - or scale height - which is equal
to the e-folding distance. The analytic solution is given as a function
of the similarity variable £ which is equal to 2= = where X is the
shock location and x is the Eulerian coordinate location. The velocity

of the shock front is given by D =czté where a -~ a coefficient which

depends only on the specific heat ratio 7 - is determined by the solution

of a boundary-value problem, 6 For the increasing density probiem

with ¥ = 2 (¢ = 1, 5), the self similar analytic solution behind the shocek is:

p= Tl pmae2g?
2
2 2 A -3/2
P = 3771 ¢ z p(X) (1+2¢)
¢ = 731“%(1'5)

where p o(X) is the ambient density immediately in front of the shock.
The unperturbed medium is characterized by
p = pyX) et

"

P (o)

u = 0

The initial conditions for our calculations were also taken after the
self-similar solution had developed. The only restriction on the
application of the analytic solution is that the initial pressure and
temperature be taken egqual to 0. While this condition is difficult to
satisfy rigorously in a numerical calculation, the temperature and
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the pressure of the ambient gas have been chosan to ke very small so
that the pressure and temperature ratios across the shock are very
large (5x 104 typically for the pressure ratio). This corresponds to
the infinite Mach number, strong shock limit required for the self-
;imﬂar soluticn.

Three differeat variables have baen used for the energy
equation, while the continuity and momentum equations have been
treated in their usual conservative form. The numerical algorithms
used treat all conservative terms in conservative finite-difference
form. Use has been made of 2 Lax-Wendroif scheme (LW)and a

Flux-Corrected Transport (FCT) scheme. The Lax-Wendroff scheme

uses the two-step Richtmeyer form coupled with a Vor Neumann vis-
cosity to provide the additional stability and viscous heating needed
near the shocks. The FCT scheme makes use of artificial viscosity
(Von Neumann type) when the energy equation is cast in terms of the
pressure or temperature variable, to provide the viscous heating
otherwise lacking in the shocks. Artificial viscosity is not needed

in the strict conservative formulation.

The first set of equations used solves for the mass, momen-

tum, and total energy per unit volume and is in strict conservative
form. The second set is based on mass, momentum, and pressure
whereas the last one uses mass, momentum, and temperature. The
total energy, pressure, and temperature equations are respectively:

aE+Y_'}_r_E -v-p+a)v (1)

et

-(Y-Dp+ay-v (2)

n

8p .
Bt +V.vp

St -rrT

]

-[(r-2T+(v-) 3]y ¥ (3)
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where E = p(e+%— vz) and € = W-TIT,WJ- for a perfect gas.

The conservation form of the difference equations is a necessary
but not a sufficient condition to guarantee the correct weak (discontin-
uous) solution to the ideal hydrodynamic e-uations. It is possible to
get different weak solutions by using different equivalent forms of the
partial differential equations. The jump conditions depend on the
form of the equation and we must use physical reasoning to determine
if these jump conditions make sense. In dealing with physical laws
we usually try to write the equations in a conservation form which

‘implies actual physical conservation. In hydrodynamics only the

total energy equation combined with the mass and momentum equation

provides a consistent set of equations for physically conserved quantities.

This problem of correctly calculating the weak soluuions can be
avoided by introducing viscosity and seeking genuine (continuous)
solutions. With viscosity the hydrodynamic equations do not have truly
discontinuous solutions and all forms of the energy equation should be
equivalent. Artificial viscosities - and not real viscosity - have to be
added to provide the necessary heating because real viscosity acts
over a few mean free paths which are usually much smaller than the
grid size. The effect of a real physical viscosity will always be too
small unless the mean free path and cell size are comparable.
However, the difficulty with artificial viscosity is that the shock

D LT Ty SV
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profile must be spread over several cells for stability regardless

of the actual physical thickness of the shock and thus infer-

actions of the shock with inhomogeneous media will not be accurate
unless the background varies slowly. Further, since there

is little physical basis for the artificial viscosity, we can only hope

that it will produce the correct heating in non-conservative formulations.

In this regard the FCT finite difference formulation seems to
have a distinct advantage in that its shock profile spreads over only
a couple of cell widths ahﬁost independent of the coefficient used for
the artificial viscosity. The velocity gradient used in the Von Neumann
viscosity is nearly independent of the coefficient and thus any amount
of heating that is desired can be achieved by raising the viscosity
coefficient. In most other schemes the larger coefficient tends to
smooth out the shock profile which reduces the velocity gradient
and somewhat offsets the effect of increased coefficient.

It is the failure to compute accurately the dissipation mech-
anism which converts kinetic energy to thermal energy that leads to
a failure to conserve energy in the temperature and pressure formu-
lations and hence gives incorrect results for the shock dynamies.
Since the total energy equation is in divergence form whether
the viscoeity terms are included or not, conservation of energy is
automatically guaranteed when a conservative difference scheme is
applied to it. In the remainder of the paper we will show the results
of several test calculations demonstrating these ideas. Section Two
shows the results for a shock propagating into an exponentially
increasing density medium. The results of the different formulations
are compared for several values of the artificial viscosity parameters
and grid sizes. In Section Three the results for the decreasing density
case are shownand in Section Four the conclusions that can be

drawn from this study are made.
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Section 2

RESULTS FOR THE INCREASING DENSITY CASE

For a Y=2 gas the self-similar solution is completely analytic.

From the Rankine-Hugoniot relations, we expect the density jump

across the shock to be equal to 3. Figures 1 and 2 show density profiles

for the energy and temperature equations respectively for the LW

scheme after a time t=350 8t. At that time, the shock has moved over

a distance equal to 1.3 A. Three different values of the viscosity
coefficient have been used and the effect of non-conservation is shown
clearly from these two figures. In the total energy formulation, the

value of b affects mainly the stability of the solution (and the amplitude

of the ripples behind the shock); in the temperature formulation, it
changes the speed of propagation of the shock significantly. For the
latter equation, the larger the viscosity coefficient, the more the
viscous heating and the better the agreement between the numerical
solution and the analytic solution. Note, however, that the peak
density behind the shock decreases with the artificial viscosity
coefficient b and thus the density profiles cannot be taken as the
only criteria of good numerical solutionys,

The integrated total and thermal energies are shown in
Figure 3 for some of these cases. This figure shows that energy
conservation is better achieved by using the total energy formulation.
Note that while for the correct energy conserving formulation the
integrated thermal energy is increasing with time, in the case of
the temperature formulation it is actually decreasing. As

v
i +
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we have seen, this loss of thermal energy raeduces the driving

force of the shock and results in the shock lagging the ccrrect
solution. When the temperature equation is used, energy
conservation is improved by increasing the magnitude of the artificial
viscosity coefficient. A limiting case occurs when the b coefficient
in q is sufficiently large to make the artificial pressure greater than
the real pressure in the sl.ock front. In that case, too much heat is
generated in the shock and, for example by using b=4 in the FCT
temperature scheme the shock moves faster than its analytic
counterpart by 1%. The total integrated energy also increases above
its correct value for this case and the difference reaches 1.8% at the
end of the run. Note 2also that for these cases the stability requires
a smaller time step since both the temperature and the shock velocity
take larger values than in a real shock.

Another limiting case is shown in Figure 4 where q has been
set equal to 0 for both the temperature and ‘ne pressure equation
formulation. The algorithm used in this case is FCT since LW would
be unstable. The shock lags behind its exact solution to 2 mach larger
extent than shown previously and 36% of the total energy is lost using
this formulation.

It was investigatad whether these results depend on the form
of the artificial viscosity coefficient. In Figure 5, use has been made
of the Tyler viscosity coefﬁcien’c'7 with the LW scheme using the
temperature formulation. The density profiles look smoother than
for the Von Neumann viscosity but the energy conservation is not as
good and consequently the shock location is also worse. Once again,
smooth density profiles do not constitute a complete criterion for
good numerical solutions. The shock dynamics, which can be checked

only against an exact solution, must also be considered.

7
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Variations of the Results with Grid Size

Results shown previously have been obtained with a fixed
grid size corresponding to a spatial resoludion of 40 grid peints per
scale height. In practice, the resolution is often much coarser so
the influence of the gpatial resolution on the results is now investi-
gated. Figure 6 shows the results for the density profiles when the
grid size 6x is multiplied by 4 so the scale height is made up of 10
grid points; the density profile in the shock broadens and the peak
value of the density just behind the shock decreases. For this
kind of spatial resolution, all equations have difficulty in simulating
the presence of a strong shock and in fact look similar. The two-cell-

wide flat top on the density profile is characteristic of FCT8. The energy
equation, although showing a reduced density ratio across the shock,

still approximates fairly well the shock locaticn and yields energy
conservation. The two other energy equation formulations gain

energy by 10% to 16% with the pressure equation more nearly conserving
ene.gy. These results contrast with the finer resolution cases for
which the same values of b lead to a loss of energy. Although the effect
of grid size is supposed tc be scaled out of the problem by the form of
the artificial viscosity used, in effect when the non-conservative
formulations are used energy conservation and shock location are
altered by changes in grid resolution even when the same coefficient

of artificial viscosity is used. Clearly, for this resolution,

information about the shock has been mostly lost for both temper-
ature and pressure equations and suggests that even 10 grid points

per scale height with the energy equation represents a minimum
resolution in order to provide a meaningful solution.

Figure 7 shows density profiles for the temperature equation
when the spatial resolution has been increased to 80 cells per scale
height. The shock width decreases while the density jump ratio

8
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increases for the same value of the parameter b in the artificial
viscosity coefficient,

From: the results presented for the increasing density case,
it is apparent that only the total energy equation forraulation yields 2
correct result in which the shock location does not depend strongly
on the viscosity coefficient or on changes in the grid size. For the
other energy equation formulations, although it is possible to find an
optimum value for the viscosity coefficient in each specific case,
this value is not independent of changes in grid size or problem
parameters. The total energy equation is thus superior in all
respects to the non- conservative forms. Although this result is
already known4, attempts to use the non-conservative formulation
with (or even without) artificial viscosity for viscous heating in shocks
have been made repeatedly, Further, this work has allowed us to
quantify this notion for a specific case by estimating the error made
when a non-conservative form is used.

b
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Section 3

RESULTS FOR DECREASING DENSITY CASE

In case of an exponentially decreasing density medium,
the "analytic” self-similar solution does not exist and has to be
replaced Hy the numerical solution of the following ordinary differential
equatiens:

dp _ r+1 1- ;—3-—%(1

dn 2a 1-2_571 p-(l/‘)’)-l nl-(Z-a)/aY

- g_%,_g_ ) p-l/? 17'(2 -a)/aY

] 5‘7 7)(2/“)‘*'7"1 = 1

_ di ap
n+a1)—d—n- = a d'r)
1
dy = - JI3 7 d¢

where U, P, and 7 is the solution behind the shock. Since the solution
to these equations is well-behaved, monctonig and does not involve
computing the sheck wave, good precision can be obtained and a
meaningful comparison can be performed with the resuits of the
partial differential equations used previously for the "numerical”
solution. The specific heat ratio ¥ was chosen to be equal to 7/5

for this case (a = 5. 45) and results are summarized briefly below.

Figures 8 and 9 show the density profiles for a very strong
shock propagating in a decreasing density medium for the FCT and
LW schemes respectively. At the tisne it is shown (t = 2006t) the
shock has traveled approximately a distance equal to 1.2 A. The grid
size is the same as that used in Figures 1-5. Note that this time the
shock is accelerating.

10

19



kit L diAn
ty
!
'
"
'l
{
t
1]
1

Several interesting features may be noted from these graphs.
First, using an artificial viscosity coefficient L=2 results in the
shock propagating too fast for both the FCT aud LW schemes. This
4 . is in contrast to the results of the increasing density case shown in
Figures 2, 5, and 7 where a coefficient b=2 resuliead in too slow a
shock propagatior Again for the decreasing density case a coefficient
3 b=0. & results in the shock lagging behind the analytic solution. The
b=1 coefficient for the LW method gives reasonable shock locaticn

L\ S

but shows significant ripples behind the shock. For comparison the

Fadurd

acluboi cbtained with the conservation energy formulation is shown
in Figure 8 and again this shock location result is in agreenient with
the analytic solution.

Integrated total and thermal energies can be computed as

N e e 4 . ———

5 previously. The differences are much smaller for this decreasing
density case (of the order of 3%)and this can easily be explained by
! the fact that since the shock propagates in a region of decreasing

Ay

density, the energy carried by the shock represents a decreasingly
smaller fraction of the total initial energy. Thus, while the energy
is conserved to 2 much hetter accuracy than previously the error in

; ' the shock dynamics is not reflected as much in the total energy con-
£ servation and energy conservation is a less useiul check on accuracy.

Another test shows the results obtained with a pressure
equation. In general, the use of the pressure equation leads to the
same kind of results as those obtained from the temperature equation.
More specifica’ly, because it involves the conservation of thermal
euergy, the results it yields lie between those given by the temperature
and the total energy equation. The artificial viscosity coefficient is
similar to that used previously and we see in this particular example

11
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that the pressure equation, although predicting quite accurately the
shock location using FCT, oscillates much more than the temperature
equation. Oscillations in Figs. 8 and 9 may have different origins.
They are clearly characteristic oscillations behind a shock for the
LW algorithm. As for the FCT scheme, the fluctuations also

seem to be cha.racteristicg, but they are somewhat weaker terraces
in which only the derivative oscillates.

12
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Section 4

CONCLUSIONS

In this study, it has been shown that the numerical results
obtained for shock speeds and instantaneous profile in an exponentially
varying density medium can differ largely due to the choice of energy
equation and spatial resolution. By comparison with an analytic
solution, it has been shown that only the conservative energy equation
is reliable. Even in this best case, a fairly fine spatial resolution is
needed in order to derive accurate results.

The inclusion of some artificial viscosity is necessary not
only for stability but to produce the necessary shock heating in the
case of the temperature and pressure formulations. By suitable
adjustment of the coefficient of artificial viscosity one can obtain a
wide range of shock profiles and shock heating and achieve
near conservation and therefore good solutions. However,
it was found that there is no unique way to chocse this coefficient
and the precise value to achieve conservation depends both on the
grid size and the nature of the problem.

The FCT algorithm does not require artificial viscosity for
stability and maintains a steep profile rather independent of the value
of artificial viscosity. Thus, if the temperature or pressure equation
must be used, FCT gives more flexibility in achieving the correct
amount of heating in the shock front. In addition, in the case of the
total energy formu'ation, the FCT scheme requires no artificial
viscosity at all, removing an additional restriction on the time step
and allowing larger time steps to be used.

13
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Fig. 1 — Shock density profiles for shock propagating in the increasing density
direction. Total energy equation formulation with Lax-Wendroff (LW) algorithm.

The shock was located at x =0 att = 0.
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Fig. 2 — Shock density profiles corresponding to the case of
Fig. 1 for temperature equation formulation
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Fig. 4 — Comparison of the different energy equation formulations (energv E,
temperature T, pressure P) without any artificial viscosity using Fluz-Corrected
Transport (FCT)
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Fig. 5 — Same as Fig. 2 using Tyler’s form of artificial viscosity
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Fig. 6 — Influence of grid size. Grid size is four times as large as for previous
figures. Shock density profiles are shown for various er rgy equations formu-

lations using FCT and for the total erergy equation using LW(Epw).
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Fig. T — Influence of grid size. Grid size is half that used in Figs.
1 through 5. Temperature equation formulation using LW.
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Fig. 8 — Shnck density profiles for shock propagating in the decreasing density
region. Temperature and energy equation formulations using FCT. The shock

was located at x =0 att = 0.
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Fig. 9 — Same as Fig. 8 using LW algorithm
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PRESSURE EQUATION — FCT SCHEME
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Fig. 10 — Results for the pressure equation forniulation using FCT
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